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Vorwort 
 
Die „Mathematischen Kostproben“ sind ein Beitrag für die Interessen- und 
Begabtenförderung im Fach Mathematik, insbesondere für die Klassenstufen 9 und 
10. Für eine intensive Vor- und Nachbereitung der Mathematik-Olympiaden werden 
anhand von aktuellen Wettbewerbsaufgaben1 thematische Schwerpunkte 
ausgewählt. Die Sammlung von ähnlichen Aufgabenstellungen mit zugehörigen 
Lösungsdiskussionen wird durch weitere Aufgaben zur Thematik ergänzt. 
 

Im Heft werden auch Beiträge veröffentlicht, die einen direkten Bezug zum 
sächsischen Korrespondenzzirkel Mathematik der Klassenstufen 9/102 haben. Diese 
sollen und können keine Lösungsdiskussion ersetzen, vertiefen aber die 
Aufgabenthematik und könnten weiterführende Anregungen geben. 
 

Mit den aktuellen Aufgaben MO650923 und MO651012 finden wir den Bezug zu 
bereits diskutierten Themen. Wir ergänzen deshalb das Thema 24 „Kombinatorik und 
klassische Wahrscheinlichkeit“ und setzen das Thema 9 „Differenzen und Summen 
von Quadratzahlen“ fort. 
 
Weiterhin betrachten wir auch unter dem Thema 35 „DIOPHANTische Gleichungen“ 
Aufgaben mit Quadratzahlen. Passend dazu zitieren wir im historischen Rückblick eine 
Arbeit von EULER aus dem Jahr 1758 zu den Zahlen, die sich als Summen zweier 
Quadratzahlen darstellen lassen.  
 
Da die „Mathematischen Kostproben“ die themenbezogene Vorbereitung auf 
mathematische Wettbewerbe fördern möchte, nehmen wir den 25. Jahrgang zum 
Anlass, auf zurückliegende Themen hinzuweisen und die zugehörigen 
Aufgabensammlungen zu wiederholen. Wir beginnen in diesem Heft mit dem 
Thema 1 „Funktionalgleichungen“ aus den Jahren 2020 und 2021. Die Lösungen sind 
in den angegebenen Heften enthalten bzw. werden auf formlose Anfrage per pdf-
Dokument zugesandt. 
 

  

 
1 www.mathematik-olympiaden.de 
2 https://www.cb.hs-mittweida.de/index.php?id=265743&no_cache=1 

http://www.mathematik-olympiaden.de/
https://www.cb.hs-mittweida.de/index.php?id=265743&no_cache=1
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Thema 24.6 – Kombinatorik3 u. klassische Wahrscheinlichkeit (Nachtrag) 
 

Auch in der 2. Runde der diesjährigen Mathematik-Olympiade wurden Aufgaben zum 
Thema gestellt. 
 

Aufgabe 24.29 – MO650923. Ermitteln Sie die Anzahl der Möglichkeiten, aus den 
dreißig natürlichen Zahlen von 1 bis 30 
 

a) genau zwei verschiedene Zahlen auszuwählen, deren Produkt durch 4 teilbar 
ist. 

b) genau drei paarweise verschiedene Zahlen auszuwählen, deren Produkt durch 
4 teilbar ist. 

 

Hinweis: Auswahlen, die sich nur in der Reihenfolge der drei Faktoren unterscheiden, 
sollen hierbei nicht als verschieden angesehen werden. 
 

Lösungshinweise zu Teilaufgabe a): Wir erhalten ein durch 4 teilbares Produkt, wenn 
entweder beide Zahlen gerade sind oder eine ungerade sowie eine durch 4 teilbare 
Zahl gewählt wird.  
 
Im ersten Fall wählen wir zwei Zahlen aus den 15 geraden Zahlen mit einem Griff. 

Dafür gibt es (
15
2

) =
15∙14

1∙2
= 105 Möglichkeiten der Auswahl. 

 
Im zweiten Fall wählen wir genau eine aus den 15 ungeraden Zahlen und dazu jeweils 
genau eine aus den 7 durch 4 teilbaren Zahlen, also aus der Menge {4, 8, 12, 16, 20, 
24, 28}. Dafür gibt es 15 · 7 = 105 Möglichkeiten der Auswahl. 
 
Insgesamt bekommen wir 105 + 105 = 210 Möglichkeiten. 
 

Lösungsvariante: Insgesamt gibt es (
30
2

) =
30∙29

1∙2
= 435 Möglichkeiten der Auswahl 

von zwei verschiedenen Zahlen aus der gegebenen Menge. Wir erhalten ein nicht 
durch 4 teilbares Produkt, wenn entweder beide Zahlen ungerade sind oder eine 
ungerade sowie eine durch 2, aber nicht durch 4 teilbare Zahl gewählt wird. 
 
Fall 1: Wählen wir zwei Zahlen aus den 15 ungeraden Zahlen mit einem Griff, so gibt 

es dafür (
15
2

) =
15∙14

1∙2
= 105 Möglichkeiten der Auswahl. 

 

 
3 s. Teil 1, Heft 8+9/2023, Teil 2: Heft 1/2025, Teil 3: Heft 02/2025, Teil 4: Heft 11/2025, Teil 5: Heft 
12/2025 
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Fall 2: Wir wählen genau eine aus den 15 ungeraden Zahlen und dazu jeweils genau 
eine aus den 8 durch 2, aber nicht durch 4 teilbaren Zahlen, also aus der Menge {2, 6, 
10, 14, 18, 22, 26, 30}. Dafür gibt es 15 · 8 = 120 Möglichkeiten der Auswahl. 
 
Insgesamt bekommen wir 435 − 105 − 120 = 210 Möglichkeiten. 
 
Anmerkung: Aus der Lösungsvariante können wir unmittelbar ablesen, dass die 
Wahrscheinlichkeit, ein Zahlenpaar zu den Bedingungen aus Teilaufgabe a) zufällig 

auszuwählen, 
210

435
≈ 48.3% beträgt. 

 

Lösungshinweise zu Teilaufgabe b): Es gibt (
30
3

) =
30∙29∙28

1∙2∙3
= 4060 Möglichkeiten der 

Auswahl von 3 verschiedenen Zahlen mit einem Griff aus den 30 gegebenen (ohne 
Berücksichtigung der Reihenfolge). Von diesen subtrahieren wir die Anzahl der 
Möglichkeiten, in denen wir kein durch 4 teilbares Produkt bekommen. Diese ergibt 
sich aus der folgenden Fallunterscheidung: 
 
Fall 1: Alle drei Zahlen sind ungerade. Da es insgesamt 15 ungerade Zahlen im 

betrachteten Bereich gibt, haben wir (
15
3

) =
15∙14∙13

1∙2∙3
= 455 Möglichkeiten der 

Auswahl von drei ungeraden Zahlen. 
 
Fall 2: Wir wählen genau zwei aus den 15 ungeraden Zahlen und dazu jeweils genau 
eine aus den 8 durch 2, aber nicht durch 4 teilbaren Zahlen, also aus der Menge {2, 6, 

10, 14, 18, 22, 26, 30}. Dafür gibt es (
15
2

) · 8 =
15∙14∙8

1∙2
= 840 Möglichkeit. 

 
Fall 3: Sind zwei gerade Zahlen unter den drei ausgewählten, ist das Produkt stets 
durch 4 teilbar. 
 
Die Gesamtzahl der gesuchten Auswahlmöglichkeiten berechnet sich damit zu        
4060 − 455 − 840 = 2765 Möglichkeiten.       ❑

    
Anmerkung: Die Wahrscheinlichkeit, ein Zahlentripel zu den Bedingungen aus 

Teilaufgabe b) zufällig auszuwählen, beträgt  
2765

4060
≈ 68.1% . 

 
Aufgabe 24.30 – MO651024. Wir betrachten die vier Paare von Primzahlen (3, 5), (7, 
11), (13, 17) und (19, 23). Aus den neun Zahlen 2, 3, 5, 7, 11, 13, 17, 19, 23 werden 
sieben Zahlen zufällig ausgewählt (Ziehen mit einem Griff bzw. Ziehen ohne 
Zurücklegen). 
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a) Wie groß ist die Wahrscheinlichkeit, dass sich unter den 7 ausgewählten Zahlen 
mindestens 2 der oben genannten Paare befinden? 

b) Wie groß ist die Wahrscheinlichkeit, dass die Summe der 7 ausgewählten 
Zahlen ungerade ist? 

c) Wie groß ist die Wahrscheinlichkeit, dass sich unter den 7 ausgewählten Zahlen 
genau 2 der oben genannten Paare befinden? 

 
Hinweis: Alle möglichen Auswahlen von 7 Zahlen sollen jeweils mit der gleichen 
Wahrscheinlichkeit auftreten. 
 
Lösungshinweise zu Teilaufgabe a): Von den neun gegebenen Zahlen werden nur zwei 
nicht ausgewählt. Dadurch kann es höchstens 2 Paare geben, die nicht vollständig in 
der Auswahl dabei sind. Also sind immer mindestens 2 Paare unter den 7 
ausgewählten Zahlen. Die gesuchte Wahrscheinlichkeit ist somit gleich 1.00 = 100%. 
 
Lösungshinweise zu Teilaufgabe b): Die Summe von 7 Zahlen ist genau dann ungerade, 
wenn die 2 (als einzige gerade Zahl) zu den ausgewählten Zahlen gehören. Es gibt 8 
Möglichkeiten, aus den 8 ungeraden Primzahlen 7 Zahlen auszuwählen, denn statt 7 
Zahlen zu wählen, können wir auch eine Zahl nicht wählen. 
 
Die Anzahl aller Auswahlmöglichkeiten von 7 aus 9 ist genauso groß wie die Anzahl 

der Möglichkeiten, 2 aus 9 auszuwählen, d.h. es kann die Gültigkeit   (
𝑛
𝑘

) = (
𝑛

𝑛 − 𝑘
) 

für alle natürliche Zahlen 0 ≤ 𝑘 ≤ 𝑛 als bekannt vorausgesetzt werden. Diese Anzahl 

beträgt somit (
9
2

) =
9∙8

1∙2
= 36. Somit beträgt die gesuchte Wahrscheinlichkeit 

8

36
=

2

9
≈ 22.2%. 

 
Lösungshinweise zu Teilaufgabe c): Für die geforderte Auswahl müssen zwei ungerade 
Zahlen nicht ausgewählt werden, die nicht zu einem gemeinsamen Paar gehören, 
denn nur in dem Fall gibt es genau 2 Paare unter den 7 ausgewählten Zahlen. Wir 
wählen zunächst zwei Paare aus den 4 gegebenen Zahlenpaaren aus. Dafür gibt es 

(
4
2

) =
4∙3

1∙2
= 6 Möglichkeiten. Für die Auswahl von je einer Zahl aus jedem Paar gibt 

es nochmals 2 ∙ 2 = 4 Möglichkeiten, insgesamt also 6 · 4 = 24 Möglichkeiten. 
 
Jeder Auswahl von diesen zwei nicht ausgewählten Zahlen entspricht genau eine 
Auswahl von 7 ausgewählten Zahlen aus den 9 gegebenen Zahlen. Wie im 
Aufgabenteil a) gibt es insgesamt 36 Auswahlmöglichkeiten. Die gesuchte 

Wahrscheinlichkeit ist daher 
24

36
=

2

3
≈ 66.7%.      ❑ 
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Thema 9.5 – Differenzen und Summen von Quadratzahlen4 
 

Aufgabe 09.28 – MO651012. In dieser Aufgabe sind 𝑎 und 𝑏 positive ganze Zahlen. 
 

a) Geben Sie alle Lösungen (𝑎, 𝑏) der Gleichung 𝑎² + 𝑏² = 65 an. 

b) Geben Sie alle Lösungen (𝑎, 𝑏) der Gleichung 𝑎² + 𝑏² = 340 an. 

c) Hat die Gleichung 𝑎² + 𝑏² = 8024 Lösungen, bei denen 𝑎 und 𝑏 ebenfalls 

positive ganze Zahlen sind? 

 

Hinweis: Die Gleichung 𝑎² + 𝑏² = 13 hat im Bereich der positiven ganzen Zahlen die 
Lösungen (2,3) und (3,2), denn es gilt 2² + 3² = 3² + 2² = 13 . 
 

Lösungshinweise zur Teilaufgabe a): (1, 8), (8, 1), (4, 7) und (7, 4) sind Lösungen, denn 
1² + 8² = 4² + 7² = 65. (Die Summanden können wir vertauschen.) Die Lösungen 
finden wir effektiv durch systematisches Probieren, indem wir untersuchen, ob sich 
für 65 − 𝑏² mit 𝑏 = 1, 2, … , 8 eine Quadratzahl ergibt. 
 

Lösungshinweise zur Teilaufgabe b): (4, 18), (18, 4), (12, 14) und (14, 12) sind 
Lösungen, denn 4² + 18² =  12² + 14² = 340. Die Lösungen finden wir auch hier 
durch systematisches Probieren, indem wir untersuchen, ob sich für 340 −  𝑏² mit 
𝑏 =  1, 2, … , 18 eine Quadratzahl ergibt. 
 

Lösungsvariante: Während in Teilaufgabe a) das systematische Probieren praktikabel 
(im Kopf) lösbar ist, erscheint diese Methode in Teilaufgabe b) unbefriedigend. 
Insbesondere ist der Lösungsansatz durch Probieren nicht verallgemeinerungsfähig. 
Wir erinnern deshalb an die Aussage aus 
 

Aufgabe 9.17 – MO1009225. Jemand behauptet: Wenn von zwei natürlichen Zahlen 
𝑎 und 𝑏 jede die Eigenschaft hat, sich als Summe der Quadrate zweier natürlicher 
Zahlen darstellen zu lassen, dann hat auch das Produkt von 𝑎 und 𝑏 diese Eigenschaft. 
 

Geben Sie ein Zahlenbeispiel an! 
Beweisen Sie diesen Satz! 

 
Die Zerlegung der rechten Seite der zu untersuchenden Gleichungen in Faktoren führt 
dazu, dass das systematische Probieren drastisch reduziert werden kann. 
 

Zerlegen wir 65 = 5 · 13, finden wir wegen 5 = 1² + 2² und 13 = 3² + 2² die 
Darstellungen 
 

65 = (1 ∙ 3 + 2 ∙ 2)2 + (2 ∙ 3 − 1 ∙ 2)2 = 72 + 42 = 49 + 16 = 65 
und 

 
4 Siehe auch Heft 09/2021, Heft 11/2022, Heft 04/2024 und Heft 05/2025 
5 Lösungshinweise s. Heft 04/2024 
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65 = (1 ∙ 3 − 2 ∙ 2)2 + (2 ∙ 3 + 1 ∙ 2)2 = 12 + 82 = 1 + 64 = 65 
 

Zerlegen wir 340 = 17 · 20, finden wir wegen 17 = 1² + 4² und 20 = 4² + 2² die 
Darstellungen 
 

340 = (1 ∙ 4 + 4 ∙ 2)2 + (4 ∙ 4 − 1 ∙ 2)2 = 122 + 142 = 144 + 196 = 340 
und 

340 = (1 ∙ 4 − 4 ∙ 2)2 + (4 ∙ 4 + 1 ∙ 2)2 = 42 + 182 = 16 + 324 = 340 
 

Lösungshinweise zur Teilaufgabe c): Da 8024 durch 4 teilbar ist, müssen für eine 
Lösung der Gleichung 𝑎² + 𝑏² = 8024 in ganzen Zahlen beide Zahlen gerade sein. Es 
gibt also ganze Zahlen 𝑚 und 𝑛 mit  
 

𝑎 = 2𝑚, 𝑏 = 2𝑛 und 𝑚² + 𝑛² = 8024 ∶  4 = 2006.  
 

Wir können als bekannt voraussetzen: Sind 𝑎 und 𝑏 beide ungerade, so lässt 𝑎² + 𝑏² 
bei Division durch 4 den Rest 2. Da nun 2006 bei Division durch 4 den Rest 2 lässt, 
müssen für eine Lösung der Gleichung 𝑚² + 𝑛² = 2006 in ganzen Zahlen beide 
Zahlen ungerade sein und sich als 𝑚 = 2𝑢 + 1 und 𝑛 = 2𝑣 + 1 mit den ganzen 
Zahlen 𝑢 und 𝑣 darstellen lassen. Dann folgt (2𝑢 + 1)² + (2𝑣 + 1)² = 2006. Daraus 
ergibt sich durch Umformungen 
 

4𝑢² + 4𝑢 + 1 + 4𝑣² + 4𝑣 + 1 = 2006 
4𝑢² + 4𝑢 + 4𝑣² + 4𝑣 = 2004 
𝑢² + 𝑢 + 𝑣² + 𝑣 = 𝑢(𝑢 + 1) + 𝑣(𝑣 + 1) =  501. 

 

Nun sind sowohl 𝑢(𝑢 + 1) als auch 𝑣(𝑣 + 1) gerade Zahlen, weil eine von zwei 
aufeinanderfolgenden ganzen Zahlen gerade ist. Dann ist aber auch die Summe    
𝑢(𝑢 + 1) + 𝑣(𝑣 + 1) gerade und kann nicht gleich 501 sein. Es gibt also keine 
ganzzahligen Lösungen der Gleichung 𝑚² + 𝑛² = 2006, damit auch keine 
ganzzahligen Lösungen der Gleichung 𝑎² + 𝑏² = 8024 und folglich erst recht nicht in 
positiven ganzen Zahlen.          ❑ 

 

Lösungsvariante zur Teilaufgabe c): Da 8024 durch 4 teilbar ist, müssen für eine 
Lösung der Gleichung 𝑎² + 𝑏² = 8024 in ganzen Zahlen beide Zahlen gerade sein. Es 
gibt also ganze Zahlen 𝑚 und 𝑛 mit  
 

𝑎 = 2𝑚, 𝑏 = 2𝑛 und 𝑚² + 𝑛² = 8024 ∶  4 = 2006.  
 

Wir können als bekannt voraussetzen: Für jede natürliche Zahl 𝑎 ist die Zahl 𝑎2 
entweder von der Form 4 ∙ 𝑘 oder von der Form 8 ∙ 𝑘 + 1, wobei jeweils 𝑘 eine 
natürliche Zahl ist.  
 

Somit kann die Summe zweier Quadratzahlen nur einen der Reste 0 + 0 = 0,               
0 + 1 = 1, 0 + 4 = 4, 1 + 1 = 2, 1 + 4 = 5 oder 4 + 4 = 8 lassen. Da nun aber 2006 
bei Division durch 8 den Rest 6 lässt, gibt es also keine ganzzahligen Lösungen der 
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Gleichung 𝑚² + 𝑛² = 2006, damit auch keine ganzzahligen Lösungen der Gleichung 
𝑎² + 𝑏² = 8024 und folglich erst recht nicht in positiven ganzen Zahlen.  
       

Die oben als bekannt vorausgesetzten Aussagen6 waren bereits in der MO Inhalt von 
Aufgaben, so in 
 

Aufgabe 09.16 – MO2209347. Jens behauptet, dass man alle natürlichen Zahlen mit 
Ausnahme von endlich vielen als Summe von zwei Quadratzahlen darstellen kann. 
Dirk behauptet dagegen, dass es unendlich viele natürliche Zahlen gibt, die man nicht 
als Summe von zwei Quadratzahlen darstellen kann. 
 

Wer hat recht? 
 

bzw. 
 

Aufgabe 9.24 – MO400941/MO4010418.  
a) Beweisen Sie: Für jede natürliche Zahl 𝑎 ist die Zahl 𝑎2 entweder von der Form 

4 ∙ 𝑘 oder von der Form 8 ∙ 𝑘 + 1, wobei jeweils 𝑘 eine natürliche Zahl ist. 
b) Gibt es eine 𝑛-stellige Quadratzahl mit 𝑛 > 1, die aus lauter gleichen Ziffern 

besteht? Beweisen Sie Ihre Antwort. 
 

Auch in folgender Aufgabe waren Summen zweier Quadrate zu untersuchen. 
 

Aufgabe MO261034. Ermitteln Sie unter allen denjenigen Werten, die   
 

                             𝑧 = 𝑥² + 𝑦² + 2𝑥 − 22  
 

für ganzzahlige 𝑥 und y annehmen kann, den kleinsten Wert 𝑧, der eine natürliche 
Zahl ist! 
 

Geben Sie alle diejenigen Paare (𝑥;  𝑦) ganzer Zahlen an, bei denen sich in der 
Gleichung dieser Wert z ergibt! 
 

Lösungshinweise: Die Umformung der gegebenen Gleichung ergibt 
 

𝑧 = 𝑥² + 𝑦² + 2𝑥 − 22 = (𝑥 + 1)² + 𝑦² − 23 
 

Damit z eine natürliche Zahl wird, muss (𝑥 + 1)² + 𝑦² − 23 ≥ 0 sein. Die kleinste 
natürliche Zahl ist 0, d.h. es müsste (𝑥 + 1)² + 𝑦² = 23 sein. Eine Darstellung der Zahl 
23 als Summe zweier Quadratzahlen existiert aber nicht, ebenso nicht für die Zahl 24 
(wie wir durch systematisches Probieren nachweisen können). Erst die Zahl 25 kann 

 
6 Da es sicher bei solchen Aufgaben in der Klausur nicht gelingt, die entsprechenden 
Aufgabennummern anzugeben, sollten die Aussagen bewiesen werden (da sie sicherlich keinen 
eigenen, zitierfähigen Namen haben). 
7 Lösungshinweise s. Heft 04/2024 
8 Lösungshinweise s. Heft 05/2025 
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als Summe zweier ganzzahliger Quadratzahlen dargestellt werden, d.h. 𝑧 = 2 ist der 
kleinste Wert, der eine natürliche Zahl mit Erfüllung der Aufgabenaussage sein kann. 
 

Zur Bestimmung der entsprechenden Paare (𝑥, 𝑦) zerlegen wir 25. 
 

(𝑥 + 1)² + 𝑦² = 25 = 0 + 25 = 25 + 0 = 9 + 16 = 16 + 9 
 

Damit sind folgende Möglichkeiten und die daraus resultierenden Paare möglich: 
 

(𝑥 + 1)² 𝑥 + 1 𝑥 𝑦² 𝑦 Paare (𝑥, 𝑦) 

25 ±5 4 ; -6 0 0 (4, 0) ; (-6, 0) 
0 0 -1 25 ±5 (-1, 5) ; (-1, -5) 

9 ±3 2 ; -4 16 ±4 (2, 4) ; (-4, 4) ; (2, -4) ; (-4, -4) 

16 ±4 3 ; -5 9 ±3 (3, 3) ; (3, -3) ; (-5, 3) ; (-5, -3) 
 

Es existieren 12 Paare (𝑥, 𝑦) für die 𝑧 den kleinstmöglichen Wert 2 annehmen kann, 
die wir durch eine Probe bestätigen können: 
 

𝑥2 + 𝑦2 + 2𝑥 − 22 = 42 + 02 + 2 ∙ 4 − 22 = 2 
𝑥2 + 𝑦2 + 2𝑥 − 22 = (−6)2 + 02 + 2 ∙ (−6) − 22 = 2 
𝑥2 + 𝑦2 + 2𝑥 − 22 = (−1)2 + (±5)2 + 2 ∙ (−1) − 22 = 2 
𝑥2 + 𝑦2 + 2𝑥 − 22 = 22 + (±4)2 + 2 ∙ 2 − 22 = 2 
𝑥2 + 𝑦2 + 2𝑥 − 22 = (−4)2 + (±4)2 + 2 ∙ (−4) − 22 = 2 
𝑥2 + 𝑦2 + 2𝑥 − 22 = 32 + (±3)2 + 2 ∙ 3 − 22 = 2 
𝑥2 + 𝑦2 + 2𝑥 − 22 = (−5)2 + (±3)2 + 2 ∙ (−5) − 22 = 2 

❑ 

Thema 35.2 – DIOPHANTische Gleichungen9 
 

Während im Teil 1 dieses Themas lineare Gleichungen ersten Grades untersucht 
wurden, beschäftigen wir uns nun mit Gleichungen zweiten Grades.  
 

Für die Gleichung  𝑥² − 𝐴𝑦² = 1 mit dem ganzzahligen Faktor 𝐴 ist in natürlichen 
Zahlen 𝑥 und 𝑦 zu lösen, wobei die triviale Lösung (1; 0) nicht in die weitere 
Diskussion einbezogen wird. Die Gleichung wurde nach dem britischen Mathematiker 
JOHN PELL (1611 – 1685) benannt, der sich u.a. mit DIOPHANTischen Gleichungen 
beschäftigte (aber nicht mit dem genannten Typ). 
 

Zunächst betrachten wir Eigenschaften der Zahl 𝐴. Es können negative Zahlen 
ausgeschlossen werden, denn in diesem Fall ließe sich die Gleichung als                         
𝑥2 + |𝐴| ⋅ 𝑦2 = 1 schreiben, die nur für |𝐴| > 1 die trivialen Lösungen hat. Ist 𝐴 eine 
Quadratzahl einer ganzen Zahl, gibt es außer der trivialen Lösung auch keine weiteren 
Lösungen, denn auf der linken Seite der Gleichung steht die Differenz zweier 
Quadratzahlen, die den Wert 1 annehmen soll. Folglich sind für 𝐴 nur 
Nichtquadratzahlen interessant.  

 
9 s. Teil 1: Heft 12/2025 
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Wir können für eine vorgegebene Zahl 𝐴 durch systematisches Suchen eine Lösung 
(𝑥 ;  𝑦) finden. So ist offensichtlich (3; 2) eine Lösung von 𝑥2 − 2 ∙ 𝑦2 = 1, aber auch 
(17 ;  12) ist eine Lösung. Können wir alle Lösungen angeben? 
 

Ist (𝑥0;  𝑦0) eine Lösung der Gleichung 𝑥2 − 𝐴 ⋅ 𝑦2 = 1, so gilt nach Binomischer 
Formel 
 

(𝑥0 + √𝐴 ⋅ 𝑦0)(𝑥0 − √𝐴 ⋅ 𝑦0) = 1 
 

und folglich finden wir wegen 
 

(𝑥0 + √𝐴 ⋅ 𝑦0)𝑛 ⋅ (𝑥0 − √𝐴 ⋅ 𝑦0)𝑛 = 1 
 

neue Lösungen mit 
 

𝑥𝑛 + √𝐴 ⋅ 𝑦𝑛 = (𝑥0 + √𝐴 ⋅ 𝑦0)𝑛 , 
 

wenn wir nur alle Summanden der Binomischen Formel ohne den Faktor √𝐴 zu 𝑥𝑛 

und die Summenden mit dem Faktor √𝐴 zu 𝑦𝑛 zusammenfassen. Damit erhalten wir  
 

𝑥𝑛 =
1

2
⋅ ((𝑥0 + 𝑦0 ∙ √𝐴)

𝑛
+ (𝑥0 − 𝑦0 ∙ √𝐴)

𝑛
) , 

𝑦𝑛 =
1

2 ∙ √𝐴
⋅ ((𝑥0 + 𝑦0 ∙ √𝐴)

𝑛
− (𝑥0 − 𝑦0 ∙ √𝐴)

𝑛
). 

 

Wir können aber aus der Bildungsvorschrift eine praktikable Rekursionsvorschrift 
herleiten:  
 

𝑥𝑛+1 + √𝐴 ⋅ 𝑦𝑛+1 = (𝑥𝑛 + √𝐴 ⋅ 𝑦𝑛)(𝑥0 + √𝐴 ⋅ 𝑦0) 

= (𝑥𝑛𝑥0 + 𝐴 ⋅ 𝑦𝑛𝑦0) + √𝐴 ⋅ (𝑥𝑛𝑦0 + 𝑦𝑛𝑥0) 
 

Am Beispiel der Lösung (3 ; 2) für 𝐴 = 2 führt dies zu 
 

𝑥𝑛+1 = 3 ∙ 𝑥𝑛 + 4 ∙ 𝑦𝑛, 
𝑦𝑛+1 = 2 ∙ 𝑥𝑛 + 3 ∙ 𝑦𝑛. 

 

Aus diesem Gleichungssystem wird zunächst 𝑦𝑛 eliminiert und wir erhalten 
 

3 ∙ 𝑥𝑛+1 − 4 ∙ 𝑦𝑛+1 = 𝑥𝑛. 
 

Setzen wir nun für 4 ∙ 𝑦𝑛+1 nach der ersten Gleichung 𝑥𝑛+2 −  3 ∙ 𝑥𝑛+1 ein, erhalten 
wir die Rekursion: 
 

𝑥𝑛+2 = 6 ∙ 𝑥𝑛+1 − 𝑥𝑛. 
 

Nun wird 𝑥𝑛 eliminiert. Dies führt zu 
 

3 ∙ 𝑦𝑛+1 − 2 ∙ 𝑥𝑛+1 = 𝑦𝑛. 
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Setzen wir nun für 2 ∙ 𝑥𝑛+1 nach der ersten Gleichung 𝑦𝑛+2 − 3 ∙ 𝑦𝑛+1 ein, erhalten 
wir die Rekursion: 
 

𝑦𝑛+2 = 6 ∙ 𝑦𝑛+1 − 𝑦𝑛. 
 

Wir verallgemeinern diese Vorgehensweise und finden die Rekursionsvorschrift wie 
folgt: 
 

𝑥𝑛+1 = 𝑥0 ∙ 𝑥𝑛 + 2 ∙ 𝑦0 ∙ 𝑦𝑛, 
𝑦𝑛+1 = 𝑦0 ∙ 𝑥𝑛 + 𝑥0 ∙ 𝑦𝑛. 

 

Aus diesem Gleichungssystem wird zunächst 𝑦𝑛 eliminiert und wir erhalten 
 

𝑥0 ∙ 𝑥𝑛+1 − 2 ∙ 𝑦0 ∙ 𝑦𝑛+1 = (𝑥0
2 − 2 ∙ 𝑦0

2) ∙ 𝑥𝑛. 
 

Setzen wir nun für 2 ∙ 𝑦0 ∙ 𝑦𝑛+1 nach der ersten Gleichung 𝑥𝑛+2 − 𝑥0 ∙ 𝑥𝑛+1 ein, 
erhalten wir die Rekursion: 
 

𝑥𝑛+2 = 2 ∙ 𝑥0 ∙ 𝑥𝑛+1 − (𝑥0
2 − 2 ∙ 𝑦0

2) ∙ 𝑥𝑛. 
 

Nun wird 𝑥𝑛 eliminiert. Dies führt zu 
 

𝑦0 ∙ 𝑥𝑛+1 − 𝑥0 ∙ 𝑦𝑛+1 = −(𝑥0
2 − 2 ∙ 𝑦0

2) ∙ 𝑦𝑛. 
 

Setzen wir nun für 𝑦0 ∙ 𝑥𝑛+1 nach der ersten Gleichung 𝑦𝑛+2 − 𝑥0 ∙ 𝑦𝑛+1 ein, erhalten 
wir die Rekursion: 
 

𝑦𝑛+2 = 2 ∙ 𝑥0 ∙ 𝑦𝑛+1−(𝑥0
2 − 2 ∙ 𝑦0

2) ∙ 𝑦𝑛 . 
 
Setzen wir das oben gefundene zweite Lösungspaar ein, führt dies zu 
 

𝑥𝑛+2 = 34 ∙ 𝑥𝑛+1 −  91 ∙ 𝑥𝑛, 
𝑦𝑛+2 = 34 ∙ 𝑦𝑛+1 − 91 ∙ 𝑦𝑛. 

 
Offensichtlich sind beide Rekursionsformel nicht gleichwertig. Wie können wir 
sichern, alle Lösungen zu finden? Um dies zu untersuchen, definieren wir: 
 
Eine Lösung (𝑥0; 𝑦0) der PELLschen Gleichung wird minimale Lösung genannt, wenn 
sie für alle Lösungen (𝑥; 𝑦) die Ungleichung 
 

𝑥0 + 𝑦0 ∙ √𝐴 ≤ 𝑥 + 𝑦 ∙ √𝐴 
 

erfüllt ist.  
 
Die minimale Lösung ist eindeutig bestimmt. Gäbe es nämlich zwei minimale 
Lösungen (𝑥01; 𝑦01) und (𝑥02; 𝑦02), so wäre 
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𝑥01 + 𝑦01 ∙ √𝐴 = 𝑥02 + 𝑦02 ∙ √𝐴, 

𝑥01 − 𝑥02 = √𝐴 ⋅ (𝑦02 − 𝑦01). 
 

Auf der rechten Seite steht aber für 𝑦01 ≠ 𝑦02 eine irrationale Zahl, im Widerspruch 
zur rationalen Zahl auf der linken Seite. Folglich müssen 𝑦01 = 𝑦02 übereinstimmen 
und damit auch 𝑥01 = 𝑥02. 
 

Wenn nun (𝑥′; 𝑦′) eine weitere, nicht nach obigen Konstruktionsprinzip auffindbare 
Lösung der PELLschen Gleichung wäre, gilt also für alle natürlichen Zahlen 𝑛 
 

 𝑥′ + 𝑦′ ∙ √𝐴 ≠ (𝑥0 + 𝑦0 ∙ √𝐴)
𝑛

. 
 

Aus der Minimalität von (𝑥0; 𝑦0) folgt 
 

 1 < 𝑥0 + 𝑦0 ∙ √𝐴 < 𝑥′ + 𝑦′ ∙ √𝐴, 
 

also gibt es einen Exponenten 𝑘 mit 
 

(𝑥0 + 𝑦0∙√𝐴)
𝑘

< 𝑥′ + 𝑦′ ∙ √𝐴 < (𝑥0 + 𝑦0 ∙ √𝐴)
𝑘+1

. 
 

Multiplizieren wir diese Ungleichungskette mit (𝑥0 − 𝑦0 ∙ √𝐴)
𝑘

, finden wir eine 

weitere Lösung (𝑥′′;  𝑦′′), wenn wir in folgender Ungleichungskette das mittlere 
Produkt ausmultiplizieren und die rationalen und irrationalen Summanden wieder 
entsprechend zusammenfassen. 
 

1 < 𝑥′′ + 𝑦′′ ∙ √𝐴 = (𝑥′ + 𝑦′ ∙ √𝐴)(𝑥0 − 𝑦0 ∙ √𝐴)
𝑘

< 1 ⋅ (𝑥0 + 𝑦0 ∙ √𝐴). 

 
Leicht überzeugen wir uns, dass (𝑥′′; 𝑦′′) tatsächlich die PELLsche Gleichung erfüllt:  
 

- Sind 𝑥‘‘ und 𝑦′′ positiv, so ist aus der letzten Ungleichung bereits ein 

Widerspruch zur Minimalität von (𝑥0; 𝑦0) gegeben.  

 

- Keine der Zahlen kann 0 sein, weil daraus entweder −𝐴 ∙ 𝑦’2 < 0 oder 𝑥’2 = 1 

folgen würde. Beide Zahlen können aber auch nicht gleichzeitig negativ sein 

(wegen der linken Seite der letzten Ungleichungskette). 

 

- Verbleiben noch folgende Fälle, die analysiert werden müssen: 

 

𝑥′′ < 0 < 𝑦′′ ⇒  𝑥′′ + 𝑦′′ ∙ √𝐴 < −𝑥′′ + 𝑦′′ ∙ √𝐴 

𝑦′′ < 0 < 𝑥′′ ⇒  𝑥′′ + 𝑦′′ ∙ √𝐴 < 𝑥′′ − 𝑦′′ ∙ √𝐴 
also 

1 < 𝑥′′ + 𝑦′′ ∙ √𝐴 < |𝑥′′ − 𝑦′′ ∙ √𝐴|  

⇒  1 < |(𝑥′′ + 𝑦′′ ∙ √𝐴) ⋅ (𝑥 ′′ − 𝑦′′ ∙ √𝐴)| = 1 
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Dieser Widerspruch (1 < 1) zeigt, dass das Paar (𝑥′′; 𝑦′′) aus positiven ganzen 
Zahlen tatsächlich alle Bedingungen einer Lösung der PELLschen Gleichung 
erfüllt und zudem eine neue minimale Lösung wäre.  

 
Also hat man mit dem obigen Verfahren, ausgehend von der minimalen Lösung, alle 
unendlich vielen Lösungen gefunden. 
 

Hinweis: Für jede positive Nichtquadratzahl 𝐴 existieren Lösungen, und diese können 
mittels Kettenbrüche konstruktiv angegeben werden. 
 
Verallgemeinern wir die PELLsche Gleichung zu 𝑥² − 𝐴 ∙ 𝑦² = 𝐶 mit ganzahligem 𝐶, so 
hängt die Existenz von Lösungen vom Wert 𝐶 ab. Während beispielsweise (10 ; 7) eine 
Lösung der Gleichung  𝑥2 − 2 ∙ 𝑦2 = 2, gibt es für 𝑥² − 2 ∙ 𝑦² = 3 keine Lösungen. Die 
Unlösbarkeit folgt aus den Restklassen bei Division durch 3:  
 

- Wären nämlich 𝑥 und 𝑦 beide durch 3 teilbar, so ist die linke Seite – im 
Widerspruch zur rechten Seite – sogar durch 9 teilbar. 

- Wäre nur eine Zahl 𝑥 oder 𝑦 durch 3 teilbar, muss auch die andere Zahl durch 
3 teilbar sein. Sind aber beide Zahlen nicht durch 3 teilbar, so ergibt sich ein 
Widerspruch, weil die Quadrate dann jeweils den Rest 1 bei Division durch 3 
lassen. 

 

Wenn es aber eine Lösung gibt, so finden wir sogar unendlich viele Lösungen, indem 
wir die spezielle Lösung (𝑥𝑐; 𝑦𝑐) der Gleichung 𝑥² − 𝐴 ∙ 𝑦² = 𝐶 mit den allgemeinen 
Lösungen der PELLschen Gleichung 𝑥² − 𝐴 ∙ 𝑦² = 1 kombinieren: 
 

 (𝑥𝐶 + 𝑦𝐶 ∙ √𝐴) ⋅ (𝑥0 + 𝑦0 ∙ √𝐴)
𝑛

. 
 

Für jede natürliche Zahl 𝑛 finden wir nach Ausmultiplizieren und Zusammenfassen der 
rationalen und irrationalen Summanden eine Lösung der verallgemeinerten PELLschen 
Gleichung.  
 

In alten Mathe-Büchern geblättert 
 

Über Zahlen, die Aggregate zweier Quadrate sind10 
LEONHARD EULER 

 

§1 Die Natur der Zahlen pflegen die Arithmetiker auf mehrere Arten zu erforschen, 
während sie deren Ursprung entweder durch Addition oder durch Multiplikation 

 
10 _Originaltitel: „De numeris, qui sunt aggregata duorum quadratorum“, erstmals publiziert in „Novi 
Commentarii academiae scientiarum Petropolitanae 4, 1758, pp. 3-40“, Nachdruck in „Opera 
Omnia: Series 1, Volume 2, pp. 295 - 327“ und Commentat. arithm. 1, 1849, pp. 155-173 [E228b]“, 
Eneström Nummer E228, übersetzt von: Alexander Aycock, Textsatz: Jens Becker, im Rahmen des 
Hauptseminars „Euler“ 2013/14 



Mathematische Kostproben – Heft 01+02/2026 (Januar/Februar 2026) 

 

 14 

darstellen. Von der ersten Art ist ohne Zweifel die einfachste Zusammensetzung die 
aus Einheiten, nach welcher alle ganzen Zahlen durch die Aggregation von Einheiten 
zu entspringen aufgefasst werden. Dann können Zahlen auch so betrachtet werden, 
wie sie aus der zweier oder mehrerer ganzer Zahlen entstehen, worauf sich das 
Problem über die Partition von Zahlen bezieht, dessen Lösung ich vor nunmehr 
einigen Jahren dargelegt habe, in welchem gesucht wird, auf wie viele verschiedene 
Weisen jede beliebige vorgelegte Zahl durch Addition zweier oder mehrerer kleinerer 
Zahlen resultieren kann. Hier aber habe ich beschlossen, die Zusammensetzung von 
Zahlen zu betrachten, mit welcher sie durch Addition zweier Quadrate hervorgehen; 
und weil auf diese Weise nicht alle Zahlen entspringen, weil die Menge dieser riesig 
ist, die durch Addition zweier Quadrate nicht hervorgebracht werden können, möchte 
ich die Natur und Eigenschaften derer, die Summen zweier Quadrate sind, hier 
untersuchen. Auch wenn viele dieser Eigenschaften schon erkannt und quasi durch 
Induktion gefunden worden sind, sind sie dennoch zum größten Teil nicht mit 
strengen Beweisen untermauert; weil ein nicht zu verachtender Teil der 
Diophant’schen Analysis auf deren Gültigkeit gestützt ist, werde ich in dieser 
Abhandlung den Beweis vieler dieser Eigenschaften, die bis jetzt ohne Beweise 
zugelassen worden sind, geben, zugleich werde ich aber auch mitteilen, was es mir 
freilich immer noch nicht zu beweisen möglich gewesen ist, auch wenn wir über deren 
Gültigkeit in keinster Weise zweifeln können. 
 

§2 Zuerst wird es also, weil die Quadratzahlen sind: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 
121, 144, 169, 196 etc. förderlich sein, diese Zahlen, die aus der Kombination zweier 
Quadrate entspringen, angeschaut zu haben, welche ich deshalb bis hinzu 200 hier 
aufführe: 0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 
49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 
104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144, 145, 146, 148, 
149, 153, 157, 160, 162, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 196, 197, 
200 
 

Dies sind natürlich alle Zahlen bis hin zu 200, die aus der Addition zweier Quadrate 
hervorgehen, und diese Zahlen mit allen ins Unendliche folgenden werde ich als die 
Summen zweier Quadrate bezeichnen, welche deshalb in dieser allgemeinen Formal 
𝑥𝑥 + 𝑦𝑦 erfasst zu werden offenbar ist, während für 𝑥 und 𝑦 nacheinander alle 
ganzen Zahlen 0, 1, 2, 3, 4, 5, 6 etc. eingesetzt werden. Welche Zahlen also in diesen 
nicht aufgefunden werden, die sind nicht Summen zweier Quadrate; diese sind also 
bis hin zu 200: 3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 38, 39, 
42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 69, 70, 71, 75, 76, 77, 
78, 79, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111, 
112, 114, 115, 118, 119, 120, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 138, 
139, 140, 141, 142, 143, 147, 150, 151, 152, 154, 155, 156, 158, 159, 161, 163, 165, 
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166, 167, 168, 171, 172, 174, 175, 176, 177, 179, 182, 183, 184, 186, 187, 188, 189, 
190, 191, 192, 195, 198, 199. 
 

Daher tritt klar zutage, dass zumindest bis 200 die Menge der Zahlen, die nicht 
Summen zweier Quadrate sind, größer ist als die derer, die Summen zweier Quadrate 
sind. Im Übrigen wird dem Betrachtenden sofort klar werden, dass keine der beiden 
Reihen dieser Zahlen in einem bestimmten und angebbaren Gesetz enthalten sind 
und es deswegen selbst schwierig sein wird, die natürliche Beschaffenheit jeder der 
beiden zu untersuchen. 
 

§3 Weil jede Quadratzahl entweder gerade und in diesem Fall durch 4 teilbar und in 
dieser Form 4𝑎 enthalten ist, oder ungerade und in diesem Fall in dieser Form 8𝑏 + 1 
enthalten ist, wird jede aus zwei Quadraten zusammengesetzte Zahl sein: Entweder 
erstens die Summe zweier gerader Quadrate und sich auf diese Form 4𝑎 + 4𝑏 
beziehen und also durch 4 teilbar sein; oder zweitens die Summe zweier Quadrate, 
eines geraden und eines ungeraden, und deshalb in einer Form dieser Art                    
4𝑎 + 8𝑏 + 1 oder in dieser 4𝑎 + 1 enthalten sein; sie wird also ein Vielfaches von vier 
um die Einheit überschreiten; oder drittens die Summe zweier ungerader Quadrate 
und wird deshalb von dieser Form  8𝑎 + 1 + 8𝑏 + 1 sein oder in dieser 8𝑎 + 2 
enthalten sein; sie wird natürlich eine verdoppelte ungerade Zahl sein und um zwei 
ein Vielfaches von acht übersteigen. 
 

Weil also alle ungerade Zahlen entweder um die Einheit ein Vielfaches von vier 
übersteigen oder von dieser Form sind 4𝑛 + 1, oder um die Einheit nach unten von 
einem Vielfachen von vier abweichen oder von dieser Form sind 4𝑛 − 1, tritt es klar 
zutage, dass keine ungeraden Zahlen von dieser zweiten Form 4𝑛 − 1 die Summen 
zweier Quadrate sind; oder aus der Reihe der Zahlen, die Summen zweier Quadrate 
sind, werden alle in dieser Form 4𝑛 − 1 enthaltenen Zahlen ausgeschlossen. 
 

Weil des Weiteren alle verdoppelten ungeraden Zahlen entweder um zwei ein 
Vielfaches von acht übersteigen, dass sie 8𝑛 + 2 sind, oder um zwei von einem 
Vielfachen von acht nach unten abweichen, dass sie 8𝑛 − 2 sind, tritt es klar zutage, 
dass keine Zahlen dieser letzten Form Summen zweier Quadrate sind; und so werden 
aus der Reihe der Zahlen, die Summen zweier Quadrate sind, die Zahlen von dieser 
Form ausgeschlossen 8𝑛 − 2. 
 

Dennoch ist indess sorgfältig zu bemerken, dass weder alle in dieser Form 4𝑛 + 1 
noch die in dieser 8𝑛 + 2 enthaltenen die Summe zweier Quadrate sind. Von jener 
Form werden nämlich die Zahlen 21, 33, 48, 69, 77, 93, 105, 129 etc. ausgeschlossen, 
von dieser hingegen diese 42, 66, 114, 138, 154 etc., deren Beschaffenheit später 
untersucht werden wird. 
 

§4 Dennoch sind indess die Zahlen, die Summen zweier Quadrate sind, so mit einem 
gewissen Zusammenhang miteinander verbunden, dass aus einer einzigen Zahl von 
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dieser natürlichen Beschaffenheit unendlich viele andere derselben Natur angegeben 
werden können. Damit dies leichter erkannt wird, möchte ich die folgenden Lemmata, 
die freilich für gewöhnlich hinreichend bekannt sind, hinzufügen.  
 

I. Wenn die Zahl 𝑝 die Summe zweier Quadrate ist, werden auch die Zahlen 4𝑝, 
9𝑝, 16𝑝 und allgemein 𝑛𝑛𝑝 Summen zweier Quadrate sein. Weil nämlich                        
𝑝 = 𝑎𝑎 + 𝑏𝑏 ist, wird sein 4𝑝 = 4𝑎𝑎 + 4𝑏𝑏, 9𝑝 = 9𝑎𝑎 + 9𝑏𝑏, 16𝑝 = 16𝑎𝑎 + 16𝑏𝑏 
und  𝑛𝑛𝑝 = 𝑛𝑛(𝑎𝑎 + 𝑏𝑏) welche Formen gleichermaßen Summen zweier Quadrate 
sind. 
 

II. Wenn die Zahl 𝑝 die Summe zweier Quadrate ist, wird auch 2𝑝 und allgemein 2𝑛𝑛𝑝 
die Summe zweier Quadrate sein.  
Es sei nämlich 𝑝 = 𝑎𝑎 + 𝑏𝑏; es wird  2𝑝 = 2𝑎𝑎 + 2𝑏𝑏 sein. Aber es ist  
 

2𝑎𝑎 + 2𝑏𝑏 = (𝑎 + 𝑏)² + (𝑎 − 𝑏)²         (1) 
 

woher sein wird 
 

2𝑝 = (𝑎 + 𝑏)² + (𝑎 − 𝑏)²                         (2) 
 

und deshalb die Summe zweier Quadrate. Daher wird in der Tat weiter sein 
 

2𝑛𝑛𝑝 = 𝑛𝑛(𝑎 + 𝑏)² + 𝑛𝑛(𝑎 − 𝑏)²          (3) 
 

III. Wenn die Zahl 2𝑝 die Summe zweier Quadrate war, wird auch ihre Hälfte 𝑝 die 
Summe zweier Quadrate sein. Es sei nämlich 2𝑝 = 𝑎𝑎 + 𝑏𝑏; es wird jede der beiden 
Zahlen 𝑎 und 𝑏 entweder gerade oder ungerade sein, woher in jedem der beiden Fälle 

so 
𝑎+𝑏

2
 wie 

𝑎−𝑏

2
 eine ganze Zahl sein wird. Es ist in der Tat 

 

𝑎𝑎 + 𝑏𝑏 = 2 ∙ (
𝑎 + 𝑏

2
)

2

+ 2 ∙ (
𝑎 − 𝑏

2
)

2

    (4) 
 

nach Einsetzen welches Wertes wird 
 

𝑝 = (
𝑎 + 𝑏

2
)

2

+ (
𝑎 − 𝑏

2
)

2

                             (5) 
 

Daher werden also alle geraden Zahlen, die Summen zweier Quadrate sind, durch 
wiederholte Zweiteilung schließlich auf ungerade Zahlen derselben Gestalt 
zurückgeführt werden. Wenn umgekehrt allein ungerade Zahlen, die Summen zweier 
Quadrate sind, erkannt werden, werden aus ihnen auch alle geraden Zahlen durch 
wiederholte Verdopplung deriviert werden. 
 

§5 Des Weiteren ist das folgende Theorem des Merkens würdig, mit welchem die 
Natur der Zahlen, die Summen zweier Quadrate sind, nicht unwesentlich ans Licht 
gebracht werden. 
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Theorem. Wenn 𝑝 und 𝑞 zwei Zahlen sind, von denen jede der beiden die Summe 
zweier Quadrate ist, wird auch deren Produkt 𝑝𝑞 die Summe zweier Quadrate sein. 
 

Beweis. Es sei 𝑝 = 𝑎𝑎 + 𝑏𝑏 und 𝑞 = 𝑐𝑐 + 𝑑𝑑; es wird sein 
 

𝑝𝑞 = (𝑎𝑎 + 𝑏𝑏)(𝑐𝑐 + 𝑑𝑑) = 𝑎𝑎𝑐𝑐 + 𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑐𝑐 + 𝑏𝑏𝑑𝑑        (6) 
 

welcher Ausdruck auf diese Weise dargestellt werden kann, dass ist 
 

𝑝𝑞 = 𝑎𝑎𝑐𝑐 + 2𝑎𝑏𝑐𝑑 + 𝑏𝑏𝑑𝑑 + 𝑎𝑎𝑑𝑑 − 2𝑎𝑏𝑐𝑑 + 𝑏𝑏𝑐𝑐                (7) 
 

und daher 
 

𝑝𝑞 = (𝑎𝑐 + 𝑏𝑑)² + (𝑎𝑑 − 𝑏𝑐)²                                                           (8) 
 

welcher das Produkt 𝑝𝑞, die Summe zweier Quadrate sein wird.   QED 
 

Aus dieser Proposition folgt, auf welche Weise auch immer mehrere Zahlen, welche 
einzelnen die Summen zweier Quadrate seien, miteinander multipliziert werden, dass 
die Produkte immer die Summen zweier Quadrate sind. Und aus dieser angegebenen 
allgemeinen Form tritt es klar zutage, dass ein Produkt aus zwei Zahlen dieser Art auf 
zwei Weisen in zwei Quadrate aufgelöst werden kann. Wenn nämlich 𝑝 = 𝑎𝑎 + 𝑏𝑏 
und 𝑞 = 𝑐𝑐 + 𝑑𝑑 ist, wird so 
 

𝑝𝑞 = (𝑎𝑐 + 𝑏𝑑)² + (𝑎𝑑 − 𝑏𝑐)²                                                             (9) 
 

wie sein 
 

𝑝𝑞 = (𝑎𝑐 − 𝑏𝑑)² + (𝑎𝑑 + 𝑏𝑐)²                                                            (10) 
 

welche Formeln verschieden sein werden, wenn nicht entweder 𝑎 = 𝑏 oder 𝑐 = 𝑑 ist. 
Weil 5 = 1 + 4 und 13 = 4 + 9 ist, wird das Produkt auf zwei Arten die Summe 
zweier Quadrate sein, es wird natürlich sein 
 

65 = (1 · 3 +  2 · 2)² + (2 · 3 − 1 · 2)² = 49 + 16                        (11) 
und 

65 = (2 · 2 − 1 · 3)² + (2 · 3 + 1 · 2)² = 1 + 64                            (12) 
 

Und wenn man ein Produkte aus mehreren Zahlen hat, welche einzelnen die Summen 
zweier Quadrate seien, wird es auf mehrere Arten in zwei Quadrate aufgelöst werden 
können. Wie wenn die Zahl 1105 = 5 · 13 · 17 vorgelegt wird, werden ihre 
Auflösungen in zwei Quadrate diese sein 
 

1105 = 33² + 4² = 32² + 9² = 31² + 12² = 24² + 23²              (13) 
 

Hier haben natürlich vier Auflösungen Geltung. 
 

§6 Obwohl aber so dargetan worden ist, wenn die Faktoren 𝑝 und 𝑞 Summen zweier 
Quadrate sind, dass auch das Produkt 𝑝𝑞 die Summe zweier Quadrate sein wird, folgt 
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dennoch die Umkehrung dieser Proposition nicht, dass, wenn das Produkt die Summe 
zweier Quadrate ist, auch ihre Faktoren Zahlen von derselben Natur sind; denn diese 
Schlussfolgerung würden weder die Regeln der Logik noch die Natur der Sache selbst 
billigen. Denn die Zahl 45 = 36 + 9 ist die Summe zweier Quadrate, dennoch ist 
keiner von beiden dieser Faktoren von ihr 3, 15 die Summe zweier Quadrate. Solider 
mag diese Schlussfolgerung scheinen: Wenn das Produkt 𝑝𝑞 und der eine der beiden 
ihrer Faktoren 𝑝 die Summen zweier Quadrate waren, dass dann auch der andere 
Faktor 𝑞 die Summe zweier Quadrate sein wird. Obgleich aber diese Schlussfolgerung 
zufällig wahr ist, wird sie dennoch mit den Regeln das logischen Schließens nicht 
bestätigt, denn es kann nicht, weil bewiesen worden ist, wenn die beiden Faktoren 𝑝 
und 𝑞 des Produktes 𝑝𝑞 Summen zweier Quadrate sind, dass 𝑝𝑞 selbst eine Summe 
zweier Quadrate ist, daher die legitime Konsequenz gezogen werden: Wenn sowohl 
das Produkt 𝑝𝑞 als auch der eine Faktor 𝑝 Summe zweier Quadrate sind, dass auch 
der andere Faktor 𝑞 eine Summe zweier Quadrate sein wird. Dass nämlich eine 
logische Folgerung dieser Art nicht legitim ist, wird auch dieses Beispiel ersichtlich 
dartun: Es ist gewiss, wenn die zwei Faktoren 𝑝 und 𝑞 gerade Zahlen sind, dass auch 
das Produkt 𝑝𝑞 eine gerade Zahl sein wird; wenn jemand aber daher folgern will, 
wenn das Produkt 𝑝𝑞 und der eine Faktor gerade sind, dass auch der andere Faktor 𝑞 
gerade sein wird, würde er sich gewaltig täuschen. 
 

Monatsaufgabe 01/202611 
 

Man bestimme die zwei kleinsten natürlichen Zahlen 𝑛 ≥ 2, für die es positive 
natürliche Zahlen 𝑎 und 𝑏 gibt, so dass folgende Gleichung gilt: 
  

∑(𝑎 + 𝑘)2

𝑛

𝑘=0

= ∑(𝑏 + 𝑘)2

𝑛+1

𝑘=0

 . 

 
 

Lösungshinweise zur Monatsaufgabe 11/2025 
 

Es wird nach folgender Vorschrift einer Ziffernfolge {𝑎1, 𝑎2, … } gebildet: 
 

Die erste Ziffer sei 𝑎1 = 2, und die zweite Ziffer sei 𝑎2 = 3. Aus dem Produkt                
𝑎1 ∙ 𝑎2 = 6 folgt als dritte Ziffer 𝑎3 = 6. Da 𝑎2 ∙ 𝑎3 = 18 ist, seien die vierte Ziffer 
𝑎4 = 1 und die fünfte Ziffer 𝑎5 = 8. Nun wird wegen 𝑎3 ∙ 𝑎4 = 6 und 𝑎4 ∙ 𝑎5 = 8 
werden 𝑎6 = 6 und 𝑎7 = 8 festgelegt. Bislang lautet die Folge also 
 

2   ⏟ 3   ⏟ 6   ⏟ 1   ⏟ 8   6   8 
 

 
11 Lösungseinsendungen an bino@hrz.tu-chemnitz.de sind bis 31.03.2026 willkommen und werden 
kommentiert und bewertet zurückgesandt. 

mailto:bino@hrz.tu-chemnitz.de
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Die geschweiften Klammern deuten an, welche Produkte bereits ausgeführt wurden. 
Nun wäre das Produkt 8 ∙ 6 = 48 zu bilden und die Folge mit den Ziffern 4 und 8 
fortzusetzen. Diese Vorschrift lässt sich beliebig fortsetzen. 
 

Man untersuche, ob in dieser Folge die Ziffer 5 auftritt! 
 

Lösungshinweise: Wir erkennen, dass eine ungerade Ziffer nur zwischen zwei geraden 
Ziffern auftreten kann. Wären nämlich 𝑐 und 𝑑 zwei aufeinanderfolgende ungerade 
Ziffern der Folge, so ist entweder 𝑐 oder 𝑑 die Einerstelle des Produktes zwei 
(vorhergehender) Ziffern 𝑎 und 𝑏. Diese Einerstelle ist nur dann ungerade, wenn 𝑎 
und 𝑏 beide ebenfalls ungerade sind. Setzen wir diese Schlussweise fort, müssten 
unter den ersten drei Ziffern dieser Folge bereits zwei aufeinanderfolgende ungerade 
Ziffern sein. Da dies nicht der Fall ist, ist die Annahme falsch und eine ungerade Ziffer 
kann nur zwischen zwei geraden Ziffern stehen. 
 

Da nun eine ungerade Ziffer aus den Ziffern des Produktes zweier nebeneinander 
stehender Ziffern entsteht, kann sie nur die Zehnerstelle eines solchen Produktes 
sein. Damit kommt aber die Ziffer 9 in dieser Folge nicht vor, da das Produkt zweier 
einstelligen Zahlen stets kleiner als 90 ist. Damit kommt aber auch die Ziffer 7 in dieser 
Folge nicht vor, weil die Zehnerstell 7 nur im Produkt 8 · 9 = 72 auftreten kann. 
Schließlich sind damit auch die Produkte 7 ∙ 8 = 56, 6 ∙ 9 = 54 nicht möglich. Also 
gibt es auch kein Produkt aus zwei einstelligen Zahlen dieser Folge, bei denen die 
Zehnerstelle 5 beträgt. 
 

Somit kann die Ziffer 5 in dieser Folge nicht auftreten.     ❑ 

 

Rückblick: Thema 1 – Funktionalgleichungen12 
 
Aufgabe 01.01 – MO601016. Max hat eine Rechenvorschrift festgelegt, durch die je 
zwei rationalen Zahlen x und y eine rationale Zahl z zugeordnet wird. Er schreibt dafür 
z = x # y. (Die Zahl z wird also mit Hilfe einer Formel aus x und y berechnet.)  
 
Anschließend stellt er fest, dass für beliebige rationale Zahlen a, b, c die Gleichung 

 
a + (b # c) = (a # b) + (a # c)        (1) 

gilt. 
 

a) Geben Sie eine Rechenvorschrift für x # y an, die nur die vier Grundrechenarten 
+, −, ·, : als Rechenarten verwendet, sodass (1) erfüllt ist. 
Zeigen Sie, dass die Gleichung (1) für beliebige rationale Zahlen a, b, c durch 
diese Rechenvorschrift tatsächlich erfüllt wird. 

 
12 s. Hefte 09/2020, 01/2021 und 09/2021 
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b) Zeigen Sie: Wenn für beliebige rationale Zahlen a, b, c die Gleichung (1) gilt, 
dann gilt für die Rechenvorschrift von # die Formel aus a). 

 
Statt des allgemeinen Symbols # hätte auch eine Funktion f verwendet werden 
können, die zwei rationalen Zahlen x und y einer rationalen Zahl z zuordnet. Dann sind 
alle Funktionen f mit ( ) zy,xf =  für rationale Zahlen x, y, z gesucht, die folgende 

Funktionalgleichung erfüllt: 
 
 ( ) ( ) ( )c,afb,afc,bfa +=+ . 

 
Aufgaben in dieser Schreibweise mit Funktionalgleichungen sind in der MO-
Geschichte bereits häufig aufgetreten. Eine Gruppe von Aufgaben beinhaltet die 
Ermittlung spezieller Funktionswerte. Ziel ist also, die Zusammenhänge aus den 
Gleichungen für geeignete Argumente auszunutzen. Mit der Formulierung „E sei f 
eine Funktion ...“ wird vorausgesetzt, dass eine solche Funktion überhaupt existiert, 
d.h., für die Funktion muss keine explizite Darstellung angegeben werden.  
  
Aufgabe 01.02 – MO271042. Es sei f eine Funktion, die für alle reellen Zahlen x 
definiert ist und für alle reellen Zahlen x1 und x2 die folgenden Gleichungen (1) und 
(2) erfüllt: 
 

𝑓(𝑥1 + 𝑥2) = 𝑓(𝑥1
3) + 𝑓(𝑥2

3)     (1) 
𝑓(𝑥1 ∙ 𝑥2) = 𝑥1 ∙ 𝑓(𝑥2) + 𝑥2 ∙ 𝑓(𝑥1)    (2) 

 

Beweisen Sie, dass durch diese Voraussetzungen der Funktionswert 𝑓(2 + √5) 

eindeutig bestimmt ist, und ermitteln Sie diesen Funktionswert! 
 
In der folgenden Aufgabenstellung wird ausdrücklich offengelassen, ob eine Funktion 
mit diesen Eigenschaften existiert. 
 
Aufgabe 01.03 – MO301044. Untersuchen Sie, ob es eine für alle reellen Zahlen x 
definierte Funktion f so gibt, dass für alle natürlichen Zahlen a und b die Gleichung  
 

𝑓(𝑎) + 𝑓(𝑎 + 𝑏) − 𝑓(𝑎 − 𝑏) = 𝑎2 + 4𝑏 + 2 gilt! 
 
Gibt es eine Lösungsstrategie für solche Aufgaben? Angenommen, es gibt eine 
Lösung, dann muss eine gegebene Gleichung erst recht für spezielle Belegungen der 
Veränderlichen gelte. Es kann also hilfreich sein, durch geschickte Wahl der 
Argumente Eigenschaften der gesuchten Funktionen zu finden, die zur expliziten 
Form der Lösung führen (können). Wir betrachten folgendes Beispiel. 
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Aufgabe 01.04. Man finde alle Funktionen 𝑓, die für alle reellen Zahlen 𝑥 und 𝑦 
definiert sind und folgende Funktionalgleichung erfüllen:  
 

( ) ( ) ( ) ( ) yxyfxfyxfyxf +=++−++ 422 . 
 

Aufgabe 01.05. Man finde alle Funktionen 𝑓 mit  
 

a) 𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦) = 𝑥2 + 2 + 𝑦2 
b) 𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦) = 𝑥2 + 2 ⋅ 𝑥𝑦 + 𝑦2 

 

Natürlich führen solche einfachen Substitutionen nicht immer zum sofortigen Erfolg. 
Geringe Änderungen in der Funktionalgleichung können beträchtliche Wirkungen 
haben!  
 
Aufgabe 01.06. Man finde alle reellwertigen Funktionen 𝑓, die für alle reellen Zahlen 
definiert sei und folgende Gleichung für alle reellen Zahlen 𝑥 und 𝑦 erfüllt:  
 

𝑓(𝑥 + 𝑦) − 2 ⋅ 𝑓(𝑥 − 𝑦) + 𝑓(𝑥) − 2 ⋅ 𝑓(𝑦) = 𝑦 − 2 
 
Aufgabe 01.07 – MO201033. Es sei 𝑓 eine Funktion, die für alle reellen Zahlen 𝑥 
definiert ist und die folgenden Eigenschaften erfüllt: 
 

Es ist 𝑓(1) = 1.         (1) 

Für jedes 𝑥 ≠ 0 ist 𝑓 (
1

𝑥
) =

1

𝑥2
∙ 𝑓(𝑥).      (2) 

Für alle x1, x2 mit 𝑥1, 𝑥2, 𝑥1 + 𝑥2 ≠ 0 gilt 𝑓(𝑥1 + 𝑥2) = 𝑓(𝑥1) + 𝑓(𝑥2). (3) 
 

Man beweise, dass für jede Funktion f, die diese Voraussetzungen erfüllt, 𝑓 (
5

7
) =  

5

7
 

gilt. 
 

Aufgabe 01.08 – MO271042. Es sei 𝑓 eine Funktion, die für alle reellen Zahlen 
𝑥 definiert ist und für alle reellen Zahlen 𝑥1 und 𝑥2 die folgenden Gleichungen (1), (2) 
erfüllt: 
 

𝑓(𝑥1 + 𝑥2) = 𝑓(𝑥1
3) + 𝑓(𝑥2

3)       (1) 
𝑓(𝑥1 ∙ 𝑥2) = 𝑥1 ∙ 𝑓(𝑥2) + 𝑥2 ∙ 𝑓(𝑥1)      (2)   

 

Beweisen Sie, dass durch diese Voraussetzungen der Funktionswert 𝑓(2 + √5) 
eindeutig bestimmt ist, und ermitteln Sie diesen Funktionswert! 
 

Aufgabe 01.09. Finden Sie alle monotonen reellwertigen Funktionen 𝑓, die für alle 
reellen Zahlen definiert sind und für die für alle reellen Zahlen 𝑥 und 𝑦 gilt: 
 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) − 1  mit 𝑓(0) = 1. 
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Aufgabe 01.10. Finden Sie alle monotonen reellwertigen Funktionen 𝑓, die für alle 
positiven reellen Zahlen definiert sind und für beliebige positive reelle Zahlen 𝑥 und 
𝑦 die folgende Funktionalgleichung erfüllen:  
 

𝑓(𝑥 ∙ 𝑦) = 𝑓(𝑥) ∙ 𝑓(𝑦). 
 

Aufgabe 01.11. Finden Sie alle monotonen reellwertigen Funktionen 𝑓, die für alle 
reellen Zahlen 𝑥 und 𝑦 definiert sind und die folgenden Gleichungen erfüllen: 
 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) − 7;  𝑓(1) = 10. 
 
Um den Umgang mit Funktionalgleichungen zu vertiefen, betrachten wir die 
 

Definition. Die reelle Funktion 𝑓: 𝑅 → 𝑅 heißt periodisch mit der Periode 𝑎 ≠ 0, wenn 
für alle reellen Zahlen 𝑥 ∈ 𝑅 die Gleichung  𝑓(𝑥 + 𝑎) = 𝑓(𝑥) erfüllt ist. 
 

Aufgabe 01.12 – MO141232. Es sei 𝑝 eine von Null verschiedene reelle Zahl und 𝑓 
eine für alle reellen Zahlen 𝑥 definierte Funktion mit der Eigenschaft 
 

𝑓(𝑥 + 𝑝) =
𝑓(𝑥)

3 ⋅ 𝑓(𝑥) − 1
 

 

a) Man beweise, dass jede derartige Funktion 𝑓 (sofern es solche gibt) 
periodisch ist. 

b) Man gebe für einen speziellen Wert von 𝑝 eine solche nicht konstante 
Funktion 𝑓 an! 

 

Aufgabe 01.13 - MO051222. Es sei 𝑎 eine von Null verschiedene reelle Zahl und 𝑓 eine 
Funktion mit folgenden Eigenschaften: 
 

1. Ist die Funktion 𝑓 an der Stelle 𝑥 definiert, so ist sie auch an den Stellen 𝑥 +
 𝑎 und 𝑥 −  𝑎 definiert. 

2. Für alle 𝑥, für die die Funktion 𝑓  definiert ist, gilt 𝑓(𝑥 + 𝑎) =
1+𝑓(𝑥)

1−𝑓(𝑥)
 . 

 

a) Es ist zu beweisen, dass die Funktion 𝑓 periodisch ist. 
b) Geben Sie für 𝑓(𝑥) einen rechnerischen Ausdruck an, der die obigen 

Eigenschaften hat! 
 
 

Offensichtlich gilt für periodische Funktionen folgende Eigenschaft: Ist 𝑎 eine Periode, 
dann ist 2𝑎 ebenfalls eine Periode, denn es gilt für alle 𝑥 
 

𝑓(𝑥 + 2𝑎) = 𝑓((𝑥 + 𝑎) + 𝑎) = 𝑓(𝑥 + 𝑎) = 𝑓(𝑥) 
 

Verallgemeinernd gilt sogar  
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Aufgabe 01.14. Die Zahlen 𝑎1, 𝑎2 seien Perioden der Funktion 𝑓. Dann ist für 
beliebige ganzzahlige Zahlen 𝑚 und 𝑛 die Zahl 𝑎3 = 𝑚 ⋅ 𝑎1 + 𝑛 ⋅ 𝑎2 ebenfalls eine 
Periode von 𝑓 (falls 𝑎3 ≠ 0). 
 

Termine 
 

65. Mathematik-Olympiade, Runde 3 (Landesrunde) 20. bis 22. Februar 2026.  
https://www.mathematik-olympiaden.de/moev/index.php/aufgaben 
 

61. Bundeswettbewerb „Jugend forscht“, Regionalausscheide Sachsen 
 

Region Nordwestsachsen, 26. Februar 2026, Leipzig, Universität Leipzig/Augusteum, 
Augustusplatz 10, 04109 Leipzig 
 

Region Ostsachsen, 28. Februar 2026, Dresden, HTWD - Hochschule für Technik und 
Wirtschaft Dresden, Friedrich-List-Platz 1, 01069 Dresden  
 

Region Südwestsachsen, 6. bis 7. März 2026, solaris Förderzentrum für Jugend und 
Umwelt gGmbH Sachsen, Neefestraße 88, 09116 Chemnitz  
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Aufgabenbezogene Themen (Schuljahr 2025/26) 
 

Ausgabe13 Nr. Thema Aufgabe 
01+02/2026 Thema 24.6 Klassische Wahrscheinlichkeit MO651024 

MO650923 
01+02/2026 Thema 9.5 Differenzen und Summen von 

Quadratzahlen 
MO651012 

01+02/2026 Thema 35.2 Diophantische Gleichungen  

12/2025 Thema 35.1 Diophantische Gleichungen  
12/2025 Thema 24.5 Klassische Wahrscheinlichkeit MO651011 

11/2025 Thema 24.4 Klassische Wahrscheinlichkeit MO651014 

11/2025 Thema 31.5 Lösungsstrategien im 
Koordinatensystem 

MO651015 
MO651016 

10/2025 Thema 33.2 Rationale Zahlen MO641041 
MO601033 

09/2025 Thema 34.2 Zyklische Aufgabenformulierungen  
08/2025 Thema 34.2 Zyklische Aufgabenformulierungen MO640946 

MO641046 
08/2025 Thema 31.4 Lösungsstrategien im 

Koordinatensystem 
MO641043 

08/2025 Thema 25.3 Gleichungen und Ungleichungen 
mit Wurzelausdrücken 

MO640942 
MO641042 
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